
Almost every seasoned C/C++ devel-
oper knows about Lint and the fact
that it can help to greatly improve

software quality. Lint statically analyzes
your source code and generates detailed lists
of warnings about potential bugs, classic
mistakes, and portability pitfalls. By going
through the list of Lint warnings (known as
“Lint issues”), you can not only correct the
problems Lint complains about, but by re-
viewing your own code, quite often find un-
related defects. This is yet more proof of
the value of code reviews, even if they are
“only” conducted by Lint and the author of
the code.

Lint aims at finding bugs early in the
development cycle, before testing starts. Bugs
found at this stage are typically 5–10 times
cheaper to fix than bugs found during system
testing [1]. If used from the outset, a tool such
as Lint would ideally help you achieve a
constant warning count of 0. However, in
most cases, Lint is introduced into ongoing
projects, in which case, you can easily get
drowned in a deluge of Lint warnings.

In such settings, project managers usually
do not have enough resources to clean up all
modules, nor do they want to risk making
code changes late in the process [2]. In
ongoing projects, project managers would
normally rather get a Lint quality overview
of the project—a compilation of the most
frequently encountered Lint warnings, a sorted

list of the most troublesome modules, and an
overall “Lint score” that allows easy tracking
of the code quality between builds. This is
where ALOA comes into play.

Hawaiian Linting
ALOA (short for A Lint Output Analyzer) is
a tool that processes output generated by PC-
lint (Gimpel Software’s Lint implementation;
see http://www.gimpel.com/) and computes
various useful metrics that give a quick
overview of the internal quality of any C/C++
project. Furthermore, it shows which kind of
Lint issues are most frequently encountered
and highlights issue-laden modules. The
metrics produced by ALOA are useful for
tracking a project’s Lint compliance and for
fine-tuning Lint policies. The source code and
related files for ALOA are available at
http://www.cuj.com/code/.

ALOA takes the output from a project-
wide Lint session and computes statistics and
metrics like:

• Overall Lint score. This is a weighted sum of
the severity of all Lint issues encountered [3].
This metric is particularly useful for moni-
toring how the Lint quality changes between
builds.

• File list. A list of modules, sorted by the
weighted severity sum of the Lint issues con-
tained. The main purpose of this list is to high-
light troublesome modules. Modules from the
top of the list are typically reviewed and
cleaned up first.

• Issue list. This list shows which Lint issues
are encountered most frequently in a project.
It is a great tool for fine tuning the Lint pol-
icy because it shows which programming con-
structs/styles are typical for a project and,
hence, may be suppressed globally by dis-
abling the corresponding warnings in the Lint
policy file.

ALOA is free software, licensed under
the terms of the GPL [4], and assumes that
you have a PC-lint license. PC-lint is a
powerful commercial version of Lint;
however, I suppose that it is not too difficult
to adapt ALOA to support other Lint
implementations.

True to Microsoft’s “eat your own dog
food” approach, ALOA has been used on
itself. Figure 1 is output from an earlier
version. Today, of course, ALOA is free of
Lint warnings at warning level 3.

Using ALOA
Again, ALOA needs the output from a
project-wide Lint session as input. This
multistaged process—step 1, obtaining project
settings; step 2, running Lint; step 3, running
ALOA—is driven by a batch file called
“dsplinter.bat,” which I wrote for Visual C++
projects (see Figure 2).

In the first step, dsplinter forwards a user-
provided Visual C++ project file (.dsp) to PC-
lint (lint-nt.exe). The output from this stage
is a PC-lint indirect file (_project.lnt) that
contains a list of all files that belong to this
project as well as predefined preprocessor
symbols, and includes path settings in a format
that is recognized by PC-lint.

Next, _project.lnt is fed to PC-lint again,
together with another indirect file called
“aloa.lnt.” aloa.lnt contains output formatting
settings that ensure that PC-lint generates
messages in a format that is understood by
ALOA. aloa.lnt includes the project policy
(policy.lnt) by reference. The project policy
determines the PC-lint warning level; that is,
it defines which warnings are reported and
which warnings are suppressed. dsplinter
assumes that the project policy is located in
the same directory as the Visual C++ .dsp file.
During the project-wide Lint session, all
output is collected in a file named “_aloa.xml.”

18 • C/C++ Users Journal • www.cuj.com • June 2004

Ralf Holly is the principal of PERA Software
Solutions and can be contacted at rholly@
pera-software.com.

Ralf Holly

Lint Metrics & ALOA

Making a powerful tool even more powerful

At step 3 (running ALOA), _aloa.xml is passed to ALOA, which
generates the Lint metrics and prints them to stdout. Typically, the
output is redirected to a file on the command line, such that the results
can be put under revision control and compared with results from
previous runs.

The command-line interface of dsplinter looks like this:

dsplinter <dspfile> (<config> | -default) [<file> | -aloa]

The first parameter is the fully qualified filename of the Visual
C++ project that you want to Lint. Next comes the actual
configuration within your .dsp file. You can either select a particular
configuration (for example, “myproject - Win32 Release”) or pass
-default to select the default configuration. The third parameter
specifies the mode of operation. If omitted, the whole project gets
Linted and all original PC-lint messages go to stdout. If you pass a
fully qualified name of a project member file instead, only this
module gets Linted [5]. To run dsplinter in ALOA mode (the focus
of this article), you have to pass -aloa.

The biggest benefit of using dsplinter to drive the process is that
it extracts the Visual C++ project settings on the fly (step 1; obtaining
project settings). Therefore, you don’t need to maintain a separate
_project.lnt manually in parallel to your .dsp file. This is possibly
because PC-lint directly supports .dsp to .lnt conversion for Visual
C++ projects. But even if you are not using PC-lint or you are not
working on Visual C++ projects, it shouldn’t be too difficult to write
a Perl script that extracts project parameters from your IDE vendor’s
project file.

Implementation
ALOA’s code was developed under Visual C++ 6.0 and comprises
only 400 lines of uncommented source code. This leanness is possible
because on the one hand ALOA doesn’t come with a fancy GUI and
on the other hand, STL offers most of what ALOA needs.

ALOA’s prebuilt executable, the Visual C++ project file and source
code, as well as dsplinter can be downloaded from http://www.pera-
software.com/aloa.htm.

Two classes, File and Issue, are essential for understanding ALOA’s
design. File encapsulates a source-code module that has been Linted.
File’s attributes are m_filename (the name of the file), m_severityScore
(the weighted severity sum of this file), and m_severestIssueNumber
(the issue number of the severest issue in this file).

As its name suggests, Issue represents a Lint issue. An Issue has
an issue number (m_number), a severity value (m_severity), and a counter
that tallies how many times this particular issue number has been
encountered in the whole project.

19 • C/C++ Users Journal • www.cuj.com • June 2004

Lint Metrics & ALOA Ralf Holly

Lint output file : _aloa.xml
Total number of issues found : 96
Total severity score : 245

File List

Rank Score MMsg MSev File

1 81 618 3 globals.h
2 64 1024 4 C:\progs\msvc\VC98\Include\vector
3 24 818 2 aloa.cpp
4 24 1510 3 parse.h
5 20 1717 2 report.h
6 18 1776 2 parse.cpp
7 8 1776 2 globals.cpp
8 6 506 3 report.cpp

Issue List

Rank Msg Sev Count

1 1776 2 20
2 618 3 15
3 1712 2 12
4 1717 2 10
5 1024 4 8
6 118 4 8
7 1702 2 4
8 762 2 4
9 783 2 3

10 1764 2 3
11 1509 3 2
12 506 3 2
13 1510 3 1
14 1512 3 1
15 818 2 1
16 1727 2 1
17 1746 2 1

Legend

Severity level 1 : Elective note
Severity level 2 : Informational
Severity level 3 : Warning
Severity level 4 : Syntax error
Severity level 999 : PC-lint error

Score Severity score
MMsg Number of issue with the highest severity encountered
MSev Severity level of the severest issue encountered
Msg Lint issue number
Sev Issue severity level
Count Total number of occurrences of issue in the whole project

Figure 1: Typical ALOA output.

project.dsp

Project
Configuration

_project.Int

aloa.Int
(policy.Int)

_aloa.xml
Lint

Metrics

lint-nt.exe

1

lint-nt.exe

2

aloa.exe

3

Figure 2: Diagram of the dsplinter.bat batch file.

Both the File and Issue classes maintain a vector of pointers to
each other. This cross referencing makes it fairly easy to answer
questions such as, “What Issues are encountered in this File?” or
“Which Files contain this Issue?” later on when generating metrics.
Listing 1 is the definition of File and Issue.

Even though dsplinter (or, more precisely, aloa.lnt) instructs PC-
lint to produce well-formed XML output that can be viewed with any
XML viewer like XMLSpy, ALOA doesn’t use a full-fledged XML
parser. For simplicity, ALOA comes with a primitive, though efficient,
parser that is only capable of extracting XML attribute values. Don’t
be surprised if you discover that it doesn’t support DTDs, validation,
XML comments, and the like.

After main (see Listing 2) has validated the command-line
arguments, it invokes the parser and registers a callback function
(onNewIssueHandler; see Listing 2). onNewIssueHandler is called back
by the parser every time a new Lint issue is encountered. The arguments
of onNewIssueHandler are the name of the file where the issue was
found and the issue number.

The main job of onNewIssueHandler is to maintain an std::map of
File objects (gFileMap) and an std::map of Issue objects (gIssueMap).
The former uses the filename of the source-code module as a key,
whereas the latter uses the Lint issue number:

typedef std::map<std::string, File*> FILE_MAP;
extern FILE_MAP gFileMap;

typedef std::map<int, Issue*> ISSUE_MAP;
extern ISSUE_MAP gIssueMap;

The first thing onNewIssueHandler does is update global information
such as the project’s total number of issues (gIssuesCount) and the
total severity score (gSeverityScore).

Next, onNewIssueHandler checks whether this particular filename
has already been registered with gFileMap. If “yes,” the corresponding
File object is retrieved from the map; otherwise, a new File object
is created. The same thing happens with Issue objects. First they
are checked as to whether a Lint Issue with the given issue number
already exists in gIssueMap; if not, a new Issue object is created and
stored in the map.

The last thing onNewIssueHandler does is cross-registration of File
and Issue objects by calling File::addIssue and Issue::addFile,
respectively. This happens regardless of how the File and Issue objects
were obtained (either by creating them from scratch or by looking up
existing objects in the maps).

Obtaining Metrics
Once the parsing phase is over, main invokes a function called
buildMetricsLists (see Listing 2). Since most of the metrics have
already been computed on the fly during the parsing phase, the only
task left for this function is to create sorted lists of all Files and Issues
encountered in the project.

Since it is not possible to sort the std::maps directly (they have
their own key-dependent ordering), the contained File and Issue
objects are first copied to dedicated std::vectors (gFileList and
gIssueList) before calling std::sort. To be able to use sort, two global
versions of operator<() need to be defined:

inline bool operator<(const File& lhs, const File& rhs) {
// Sort by severity score, then filename
if (lhs.m_severityScore == rhs.m_severityScore)

return lhs.m_filename < rhs.m_filename;
return lhs.m_severityScore > rhs.m_severityScore;

}

inline bool operator<(const Issue& lhs, const Issue& rhs) {
// Sort by count, then by severity
if (lhs.m_count == rhs.m_count)

return lhs.m_severity > rhs.m_severity;
return lhs.m_count > rhs.m_count;

}

After the lists have been built up in memory, the only job left to
do is present the metrics to the user. This is done by invoking
reportMetrics.

20 • C/C++ Users Journal • www.cuj.com • June 2004

Lint Metrics & ALOA Ralf Holly

// Encapsulates a lint issue (ie. warning, error)
class Issue {
public:

Issue(int number, int severity) :
m_number(number),
m_severity(severity),
m_count(0) {}

// Register a file with this issue
void addFile(const File* pFile) {

assert(pFile != NULL);
m_files.push_back(pFile);
++m_count;

}
int getNumber() const { return m_number; }
int getSeverity() const { return m_severity; }
int getCount() const { return m_count; }

private:
friend bool operator<(const Issue& lhs, const Issue& rhs);
typedef std::vector<const File*> FileList;
int m_number; // Lint issue number
int m_severity; // The severity level of this lint issue
int m_count; // Total number of occurrences of this lint issue
FileList m_files; // List of all files that contain this lint issue

};
// Encapsulates a source code file with possibly many lint issues
class File {
public:

File(const std::string& filename) :
m_filename(filename),
m_severityScore(0),
m_severestIssueNumber(UNUSED_ISSUE_NUMBER) {}

// Registers a lint issue with this file
void addIssue(const Issue* pIssue) {

assert(pIssue != NULL);
m_issues.push_back(pIssue);
int issueNumber = pIssue->getNumber();
int severity = getSeverity(issueNumber);
if (m_severestIssueNumber == UNUSED_ISSUE_NUMBER

|| severity > getSeverity(m_severestIssueNumber)) {
m_severestIssueNumber = issueNumber;

}
m_severityScore += severity;

}
const std::string& getFilename() const { return m_filename; }
int getSeverityScore() const { return m_severityScore; }
int getSeverestIssueNumber() const { return m_severestIssueNumber; }

private:
friend bool operator<(const File& lhs, const File& rhs);
typedef std::vector<const Issue*> IssueList;
std::string m_filename; // The name of this source code module
int m_severityScore; // The accumulated severity score
int m_severestIssueNumber; // The issue number with the highest severity
IssueList m_issues; // List of all Lint issues contained in this file

};

Listing 1

Conclusion
ALOA is a simple yet powerful tool, particularly for introducing PC-
lint to ongoing C/C++ projects. It quickly gives an overview of all
encountered Lint issues, helps monitor a project’s Lint quality over the
course of time, and pinpoints troublesome modules.

I have successfully used ALOA on various projects, ranging from
extremely resource-constrained embedded systems to GUI-based
desktop systems. In all cases, PC-lint and ALOA have jointly helped
reducing development costs.

It is impossible for me to quantify the benefits of using ALOA,
but I’m convinced it is another—rather lightweight and inexpensive—
step towards better software quality.

Acknowledgment
I would like to thank Peter Most for his support in reviewing this
article and source code.

References
[1] McConnell, Steve. Code Complete, Microsoft Press, 1993.
[2] Obviously, most of what Lint warns about are not really bugs. Rather,

Lint acts like a mentor and asks the developer questions such as, “Are
you really sure about what you are doing?”

[3] Not all Lint issues are considered equally bad. For instance, ALOA
differentiates between Lint fatal errors (999 severity points), syntax
errors (4 severity points), warnings (3 severity points), informational
messages (2 severity points), and elective notes (1 severity point).

[4] http://www.gnu.org/licenses/gpl.html/.
[5] With the help of dsplinter, you can easily integrate PC-lint with Vi-

sual Studio. This lets you Lint single modules from within Visual Stu-
dio and to quickly navigate between Lint messages. Refer to ALOA’s
readme file for details. ❏

22 • C/C++ Users Journal • www.cuj.com • June 2004

Lint Metrics & ALOA Ralf Holly

static void onNewIssueHandler(const char* pFilename, int number) {
int severity = getSeverity(number);
// Update global metrics
++gIssuesCount;
gSeverityScore += severity;
// Obtain file object
string filename(pFilename);
File* pFile = 0;
FILE_MAP::iterator iterFile = gFileMap.find(filename);

// If unknown filename, create new file object
if (iterFile == gFileMap.end()) {

pFile = new File(filename);
bool wasInserted = gFileMap.insert(make_pair(filename, pFile)).second;
assert(wasInserted);

// If known filename, retrieve existing file object
} else {

pFile = (*iterFile).second;
}
// Obtain issue object
Issue* pIssue = 0;
ISSUE_MAP::iterator iterIssue = gIssueMap.find(number);
// If unknown issue, create new issue object
if (iterIssue == gIssueMap.end()) {

pIssue = new Issue(number, severity);
bool wasInserted = gIssueMap.insert(make_pair(number, pIssue)).second;
assert(wasInserted);

// If known issue, retrieve existing issue object
} else {

pIssue = (*iterIssue).second;
}
// Update file/issue metrics
pFile->addIssue(pIssue);
pIssue->addFile(pFile);

}
static void buildMetricsLists() {

// Create sorted file list
FILE_MAP::iterator iterFile = gFileMap.begin();
for (; iterFile != gFileMap.end(); ++iterFile) {

gFileList.push_back(*(*iterFile).second);
}
sort(gFileList.begin(), gFileList.end());
// Create sorted issue list
ISSUE_MAP::iterator iterIssue = gIssueMap.begin();
for (; iterIssue != gIssueMap.end(); ++iterIssue) {

gIssueList.push_back(*(*iterIssue).second);
}
sort(gIssueList.begin(), gIssueList.end());

}
int main(int argc, const char* const argv[]) {

try {
initGlobals();
scanCommandLine(argc, argv);
parseLintOutputFile(gpLintOutputFile, &onNewIssueHandler);
buildMetricsLists();
reportMetrics();

} catch (const ParseFileNotFoundError& e) {
reportFatalError("Cannot access " + e.getFilename());

} catch (const ParseMalformedLineError& e) {
ostringstream s;
s << "Malformed file: " << e.getFilename() << ",

line: " << e.getLineNo();
reportFatalError(s.str());

} catch (...) {
reportFatalError("Unspecified fatal error");

}
return EXIT_SUCCESS;

}

Listing 2

