
I
n embedded programming, especially
when developing device driver-level
code, performance is often at a premi-
um. One way to improve execution

time is to reduce the overhead of looping
through the use of an age-old technique
known as “loop unrolling.”

Tom Duff invented a special kind of
loop-unrolling mechanism, known as
“Duff’s Device,” that makes loop un-
rolling much easier. In this article, I ex-
amine the idea behind loop unrolling
and explain how to generalize loop un-
rolling such that it can be put in a
reusable library.

Classic Loop
Unrolling
When implementing device drivers, you
often have to access device registers a cer-
tain number of times from within a loop.
Imagine a network I/O driver that sends
characters to a port:

#define HAL_IO_PORT
(volatile char)0xFFFF8000

for (i = 0; i < len; ++i) {
HAL_IO_PORT = *pSource++;

}

For each pass through the loop (that is,
for each character copied/sent to the port),
three things happen:

• There is a jump to the beginning of the
loop.

• Next i, the loop counter, is incremented.
• i is compared against len.

If the output operation itself consumes
very little time (as it is normally the case
when accessing a device register), these
three steps add significant overhead.

Instead of copying the characters in a
loop, you can transmit the characters “in-
line” and thereby save the jump, incre-
ment, and comparison:

HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;
...

However, this approach suffers from
two weaknesses. First, it is static, mean-
ing you have to know exactly how many
characters you want to transfer; second,
it is wasteful in terms of code memory,
because the same line of code is repeat-
ed len times.

As a result, developers usually imple-
ment loop unrolling like this:

int n = len / 8;
for (i = 0; i < n; ++i) {

HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;

HAL_IO_PORT = *pSource++;
HAL_IO_PORT = *pSource++;

}

This approach processes eight opera-
tions in a row, which reduces the loop-
ing overhead to one-eighth. To handle
cases were len is not evenly divisible by
eight, a postprocessing loop is needed to
execute the remaining copy operations:

n = len % 8;
for (i = 0; i < n; ++i) {

HAL_IO_PORT = *pSource++;
}

Even though this scheme works well, it
is quite “wordy” and definitely not easy
to maintain. Further, it cannot be gener-
alized and put in a library.

Duff’s Device
In 1983, while working at Lucasfilm, Tom
Duff invented some C magic that imple-
ments loop unrolling without the need for
the second (that is, postprocessing) loop.
If you haven’t seen it before, you should
fasten your seatbelts before reading on:

A Reusable
Duff Device

“Tom Duff invented
a special kind of
loop-unrolling
mechanism known
as ‘Duff’s Device’”

Loop unrolling
made easy

RALF HOLLY

Ralf is principal of PERA Software Solu-
tions and can be contacted at rholly@
pera-software.com.

E M B E D D E D S Y S T E M S

http://www.ddj.com Dr. Dobb’s Journal, August 2005 73

int n = (len + 8 - 1) / 8;
switch (len % 8) {

case 0: do { HAL_IO_PORT = *pSource++;
case 7: HAL_IO_PORT = *pSource++;
case 6: HAL_IO_PORT = *pSource++;
case 5: HAL_IO_PORT = *pSource++;
case 4: HAL_IO_PORT = *pSource++;
case 3: HAL_IO_PORT = *pSource++;
case 2: HAL_IO_PORT = *pSource++;
case 1: HAL_IO_PORT = *pSource++;
} while (--n > 0);

}

If your first reaction is “But this is not
legal C code!”, you are not alone. But rest
assured, this is legal C/C++. For back-
ground information on how this piece of
code came about and an historic e-mail
by Tom Duff that he wrote to Dennis
Ritchie, see http://www.lysator.liu.se/c/
duffs-device.html.

Just as before, the device works by un-
rolling the loop eight times; that is, the copy
operation is executed eight times in a row.
The only exception is the first time through
the do-while loop, where fewer copy oper-
ations may be executed, as there is no guar-
antee that the total number of copy opera-
tions (len) is evenly divisible by eight. The
postprocessing loop has been effectively
turned into an inlined preprocessing loop.

As in the previously shown manual un-
rolling scheme, the loop overhead is ef-
fectively reduced to one-eighth (there is
only one loop counter decrement and only
one comparison against zero for every eight
copy operations). If you think one-eighth
is not enough, go ahead and increase the
block size until you’re happy, but make
sure that you increase the number of cas-
es in the switch statement accordingly.

A Reusable Duff Device
Tom Duff’s Device is highly useful, tech-
nically interesting, but unfortunately, not
a pleasant sight to see. This is probably
the reason why my mind refuses to mem-
orize it. Therefore, I decided to wrap the
nitty-gritty details within a macro:

#define DUFF_DEVICE_8(aCount, aAction) \
do { \

int count_ = (aCount); \
int times_ = (count_ + 7) >> 3; \
switch (count_ & 7){ \
case 0: do { aAction; \
case 7: aAction; \
case 6: aAction; \
case 5: aAction; \
case 4: aAction; \
case 3: aAction; \
case 2: aAction; \
case 1: aAction; \

} while (--times_ > 0); \
} \

} while (0)

Compared to the original device, I’ve
changed a couple of minor things. First,
I put the whole device in a dummy do-

while block to get a local namespace to
avoid variable name clashes and to en-
force a trailing semicolon. Second, I’ve
replaced the multiplication and modulo
operations with right-shift and bit-wise
AND operations. Even though most con-
temporary compilers would apply this
optimization themselves, it certainly
doesn’t hurt to be explicit. Third, I’ve in-
troduced another local variable, count_,
to cater for cases where coders pass in
complicated (expensive) expressions or
function calls.

With a macro like this, the transmitter
loop is reduced to a single line of code:

DUFF_DEVICE_8(len, HAL_IO_PORT =
*pSource++);

By the way, did you notice that there
is a subtle difference between the origi-
nal for loop and the Duff Device version?
Answer: The Duff Device does the wrong
thing in case len is zero, because it exe-
cutes the operation eight— not zero —
times. If you want, you can add support
for this special case by adding an if check
to the macro; however, I prefer to handle
it outside the macro and add the check
only if it is really needed:

if (len > 0)
DUFF_DEVICE_8

(len, HAL_IO_PORT = *pSource++);

As another example, consider this sim-
plified version of an EEPROM driver rou-
tine that I recently implemented:

int CopyToEEPROM(const void*
pSource, void* pDest, unsigned len) {

// Anything to copy?
if (len > 0) {

const char* s = (const char*)pSource;
char* d = (char*)pDest;

// First, need to copy data to page buffer
DUFF_DEVICE_8(len, *d++ = *s++);

// Start EEPROM write cycle
HAL_EEPROM_WRITE();

// Check if data was transferred correctly
s = (const char*)pSource;
d = (char*)pDest;
DUFF_DEVICE_8(len,

if (*d++ != *s++) return 1; /* Fail */);
}
return 0; // Success

}

There used to be two slow, hand-coded
loops in the original driver code: One
copied the data to the EEPROM page
buffer (as required by the EEPROM hard-
ware), the second checked whether the
data was successfully written. By replac-
ing them with two Duff Devices, the code
has become both faster and clearer.

DDJ

74 Dr. Dobb’s Journal, August 2005 http://www.ddj.com

At Intel’s Enterprise Platforms group, we
are focused on delivering leading tech-
nology, silicon, software and platforms
that enable superior enterprise computing
solutions. Enterprise computing systems
and servers powered by Intel® processors
can be found in small, mid-tier and
high-performance environments. Our
products include server and work-station
components such as pro-cessors,
motherboards, chipsets, server adapters,
chassis, platforms and raid controllers.
We currently have an opportunity for:

Server BIOS Engineers

In this position, you will develop BIOS
and Extensible Firmware Interface (EFI)
code, resolve customer issues, train/
support offshore manufacturers and
apply software engineering principles to
improve quality.

This position requires a B.S. degree or a
M.S. degree in Electrical Engineering or
Computer Science (or equivalent work
experience) with more than three years of
direct experience. Additional quali-
fications include: applicable training and
experience in the development of low-
level firmware or software, preferably PC
BIOS in assembler and C; working
understanding of most key PC server
specifications such as Intelligent
Platform Management Interface (IPMI),
Advanced Configuration and Power
Interface (ACPI), SMBIOS*, EFI and
Peripheral Component Interconnect
(PCI); a strong history of resolving issues
in unfamiliar code is highly desirable and
a working familiarity with software quality
practices.

For immediate consideration, please
email your resume to epsdjobs@intel.com.
Or for more information on Intel visit our
website at www.intel.com/jobs.

Intel and the Intel logo are registered trademarks of Intel
Corporation. Intel Corporation is an equal opportunity
employer. ©2005. Intel Corporation. All rights reserved.

Make the most of your mind

intel.com/jobs

Think, Innovate
and Work with
Technology
Leaders

