
There was a time when humanity faced the
universe alone and without a friend. Now
he has creatures to help him; stronger crea-
tures than himself more faithful, more use-
ful, and absolutely devoted to him. Mankind
is no longer alone.

—Isaac Asimov, I, Robot

A
lmost all software engineering ex-
perts agree that continuous integra-
tion is superior to the “big-bang” in-
tegration approach employed in the

dark ages. Especially agile methodologies
such as Extreme Programming (XP) pro-
mote development processes that let de-
velopers add functionality little-by-little,
thereby significantly reducing project risk.

To ensure that frequent code check-
ins (so-called “code deliveries,” or “de-
liveries,” for short) are of high quality,
frequent build and test cycles are in-
evitable. One such approach is the now
famous “Daily Build and Smoke Test”
process, described in detail in Steve Mc-
Connell’s book Rapid Development (Mi-
crosoft Press, 1996). While daily building
and smoke testing significantly reduces
project risk, for large and complex pro-
jects you may want to take this approach
to extremes by validating your code base
on a check-in basis— that is, many times
a day. The advantages are obvious. If you
check in buggy code, it will be immedi-
ately detected, which means that there

will be no more time-consuming “Who’s
broken the build?” quests.

In this article, I present an approach
that puts the Herculean building and test-
ing effort on the shoulders of a test robot,
or “testbot.”

The Challenge
One of my current projects is a complex
embedded-systems project. It isn’t partic-
ularly large (around 20 developers and 100
KLOC), but it is a multiplatform, multifea-
ture kind of project. At any time— or more
precisely, within a rather short period of
time— the system has to be in a releasable
state for any hardware platform and vari-
ous combinations of features supported
by our common code base. Here, I refer
to such a combination of features on a par-
ticular hardware platform as a “target.”

Working on this project used to be like
walking on a mine field. If you added a
feature or fixed a bug for some target,
there was a certain probability that you
broke the build on another target or at
least introduced a compiler warning. Over
time, these issues tended to accumulate,
resulting in a downward spiral. Lots of ef-
fort had to be expended later on to get
back to a clean build.

Obviously, requiring the developers to
verify all of the other platforms and prod-
ucts before delivering their changes would
have taken way too much time, let alone
the fact that not every developer had ac-
cess to all of the toolchains (compilers,
linkers, in-circuit emulators, and the like)
that the code base supports.

The Innards of a Testbot
I solved this problem by assigning dedi-
cated testbots to all the targets we sup-
port. The testbots are workstations that
host a program that listens on the source-
code-versioning system (ClearCase, in our
case) for new deliveries of developers.
When a developer finishes delivering her

task to the integration branch, the testbot
executes the following steps:

1. Inform developer(s). To inform you that
your check-in is under test, an e-mail
is sent to you, plus a carbon-copy to
the testbot administrator; see Figure 1.
The e-mail details what is being tested
(whose deliveries) and contains a link
to the testbot’s logfile. By inspecting the
logfile, you can track the status of the

testbot’s work. In order to implement
such an e-mail notification scheme, you
need a username to e-mail address
mapping. In our case, we use a simple
two-column text file that even lets de-
velopers specify their mobile phone num-
bers. This enables the testbot to send you
a short message via an e-mail-to-SMS
gateway in case something went wrong
(or everything built and tested fine).

2. Checkout code. The testbot checks out
a private copy of the source code based
on the last completed delivery.

3. Build the code. The whole code is built
and possibly— as it is the case on our
project— checked against compiler and
Lint warnings.

Ralf is principal of PERA Software Solu-
tions and can be contacted at rholly@
pera-software.com.

“Testbots are
workstations that
host a program that
listens on the
source-code-
versioning system”

Testing, with a little
help from your friends

I, Testbot

E M B E D D E D S Y S T E M S

42 Dr. Dobb’s Journal, May 2006 http://www.ddj.com

RALF HOLLY

4. Execute (smoke) tests. Depending on
the size and the needs of the project,
the testbot executes the tests. In our
case, we restricted the test set to tests
that only cover the most important
nominal cases. If test execution con-
sumes too much time, you might not
be able to check enough code deliver-
ies per day and hence will detect de-
fects too late; that is, when the devel-
opers already went home.

5. Inform developer(s). The last step is
sending another e-mail (and/or short
message, if you want) to you, inform-
ing you about the outcome of the test.
If the testbot spots a problem, it addi-
tionally sends a copy to all team mem-
bers, warning them about problems on
the integration branch; see Figure 2.

The testbot software was quite easy to
implement. In total, it comprises less than
1000 lines of Perl code; however, the size
depends on the kind of source-code-
versioning system you are using— dif-
ferent systems offer different solutions for
parallel software development and query-
ing of check-in information. Listing One
is the testbot pseudocode implementation.
For simplicity, I’ve left out logging and er-
ror handling.

The TX Model
A small disadvantage of the testbot I’ve
just described is that it heavily relies on
e-mail notification. Oftentimes, develop-
ers complain about the flooding of e-mails
that the testbots send, just because some
developer caused a Lint warning on a tar-
get they are only marginally interested in.

Thus, I crafted an extended version (see
Listing Two) that differentiates between
major and minor issues:

• Major issues. Major issues are problems
that prevent other developers from in-
tegrating their code. We decided that
compile- and link-time problems, as well
as smoke test execution errors, belong
to this category. Because of their sever-
ity, major issues are broadcast— just like
before— by e-mail to all developers.

• Minor issues. Unlike major issues, mi-
nor issues do not prevent further code
deliveries and hence are only reported
by e-mail to the developer who deliv-
ered the code, the architect, and the pro-
ject lead. On our project, compiler and
Lint warnings belong to this category.

In addition to the e-mail-notification
mechanism, there is a client program called
“Observer” (implemented in Perl/Tk) run-
ning on all project member’s workstations.
The Observer monitors the state of all tar-
gets. The following information can be de-
rived from Figure 3:

1. The last update to the screen occurred
at 14:02:50 and happened due to a state
change (start of build 504) reported by
the testbot of the Venus target (indicat-
ed by the asterisk next to the name).

2. Because of the delivery of JOHNC et
al. (you can get the full list of devel-
opers who delivered to the integration
branch by placing your mouse cursor
over “JOHNC…”), the Mars project cur-
rently has major issues. The previous
run based on the check-in of PETERZ,
however, was fine. Since the Mars test-
bot is idling, we can assume that
JOHNC et al. haven’t delivered a fix yet;
hopefully, they are working on it.

3. JOHNC et al. didn’t cause any trouble
to the Jupiter target.

4. Saturn is still being tested, but the pre-
vious run (build 473) reported minor is-
sues. Most likely, JACKF just fixed these
issues because he is also the originator
of the current testbot run (build 474).

5. Pluto and Venus are still being tested.
The previous run was fine.

To provide Observer with build and test
state information, the testbots drop cook-
ies on a shared file server directory. Fig-
ure 4 presents the contents of the cookie
files for a particular target. The Observer
regularly checks this shared directory for

http://www.ddj.com Dr. Dobb’s Journal, May 2006 43

Figure 2: E-mail informing the whole team about problems related to JOHNC
and GARYW’s check-ins.

Figure 1: E-mail notifying developers JOHNC and GARYW that their check-ins
are under test.

Listing One
loop forever

sleep for 5 minutes
check versioning system for new deliveries
if new deliveries since last testbot run

get list of developers who delivered
foreach developer who delivered

send 'test started' email
checkout code based on last delivery
execute build
if build problems

foreach team member
send 'build problems' email

redo loop
execute smoke test
if smoke test problems

foreach team member
send 'smoke test problems' email

redo loop
foreach developer who delivered

send 'test successful' email
redo loop

Listing Two
loop forever

sleep for 5 minutes
check versioning system for new deliveries

if new deliveries since last testbot run
get list of developers who delivered
drop 'build in progress' cookie (target.current)
foreach developer who delivered

send 'test started' email
checkout code based on last delivery
execute build
if build major problems

drop 'build major problems' cookie (target.lkb)
foreach team member

send 'build problems' email
redo loop
if build minor problems

drop 'build minor problems' cookie (target.lkb)
foreach team member, architect, project lead

send 'build minor problems' email
redo loop
execute smoke test
if smoke test problems

drop 'smoke test problems' cookie (target.lkb)
foreach team member

send 'smoke test problems' email
redo loop
drop 'test successful' cookie (target.lkgb)
remove 'build in progress' cookie (target.current)
foreach developer who delivered

send 'test successful' email
redo loop

DDJ

changes and displays the information in
a user-friendly dialog.

By employing this mixed push/pull (e-
mail/Observer) scheme, we significantly
reduced the number of e-mail broadcasts,
thus improving developer happiness.
Moreover, the Observer is a nice tool for
project leads because they get constant

feedback on the quality of their and oth-
er leads’ projects.

The Sky Is the Limit
Once you have build and test automation,
as well as a testbot framework in place,
you can assign all kinds of useful tasks to
your testbots. Why not have a testbot ex-

ecute all of your system tests, stress tests,
and performance measurements many
more times than you used to? On our pro-
ject, we have a testbot that takes care of
executing all of the thousands of devel-
oper (unit) tests. It iterates over a list to
which developers add references to their
developer test suites. Of course, these ex-
tended tests take days to execute, imply-
ing that you cannot test individual check-
ins but rather whole sets of check-ins. Still,
if something goes wrong, you know ex-
actly who made changes to the code base
and who is likely to be the culprit.

Conclusion
Delivering functionality in small increments
is the preferred way of developing systems
these days. Especially on medium to large
projects, testbots help ensure code quality
and reduce project risk through frequent
testing— much more testing than any hu-
man being is able to bear. Equip your test-
bot with a friendly UI and it will be, as the
Sirius Cybernetics Corporation would put it,
“your plastic pal who’s fun to be with.”

DDJ

44 Dr. Dobb’s Journal, May 2006 http://www.ddj.com

Shortly after I had finished this article,
the open-source project CruiseControl
(http://cruisecontrol.sourceforge.

net/) was brought to my attention. So
far, I haven’t had a chance to use it in
a project, but from what I’ve seen on
their web site, it looks like a solid tool
to me. It comes with e-mail notifica-
tion support and reporting facilities. Be-
fore you reinvent the (build)loop, you
might want to give CruiseControl a try.
Let me know what you think of it.

—R.H.

CruiseControl

Figure 3: Data displayed by the Observer tool.

Figure 4: The contents of the Mars testbot’s cookie files.

